Skip to contents

All functions

DeconvDLModel-class DeconvDLModel
The DeconvDLModel Class
PropCellTypes-class PropCellTypes
The PropCellTypes Class
SpatialDDLS-Rpackage
SpatialDDLS: an R package to deconvolute spatial transcriptomics data using deep neural networks
SpatialDDLS-class SpatialDDLS
The SpatialDDLS Class
ZinbParametersModel-class ZinbParametersModel
The Class ZinbParametersModel
barErrorPlot()
Generate bar error plots
barPlotCellTypes()
Bar plot of deconvoluted cell type proportions
blandAltmanLehPlot()
Generate Bland-Altman agreement plots between predicted and expected cell type proportions of test data
calculateEvalMetrics()
Calculate evaluation metrics on test mixed transcriptional profiles
cell.names() `cell.names<-`()
Get and set cell.names slot in a PropCellTypes object
cell.types() `cell.types<-`()
Get and set cell.types slot in a DeconvDLModel object
corrExpPredPlot()
Generate correlation plots between predicted and expected cell type proportions of test data
createSpatialDDLSobject()
Create a SpatialDDLS object
deconv.spots() `deconv.spots<-`()
Get and set deconv.spots slot in a SpatialDDLS object
deconvSpatialDDLS()
Deconvolute spatial transcriptomics data using trained model
distErrorPlot()
Generate box or violin plots showing error distribution
estimateZinbwaveParams()
Estimate parameters of the ZINB-WaVE model to simulate new single-cell RNA-Seq expression profiles
features() `features<-`()
Get and set features slot in a DeconvDLModel object
genMixedCellProp()
Generate training and test cell type composition matrices
getProbMatrix()
Getter function for the cell composition matrix
installTFpython()
Install Python dependencies for SpatialDDLS
interGradientsDL()
Calculate gradients of predicted cell types/loss function with respect to input features for interpreting trained deconvolution models
loadSTProfiles()
Loads spatial transcriptomics data into a SpatialDDLS object
loadTrainedModelFromH5()
Load from an HDF5 file a trained deep neural network model into a SpatialDDLS object
method() `method<-`()
Get and set method slot in a PropCellTypes object
mixed.profiles() `mixed.profiles<-`()
Get and set mixed.profiles slot in a SpatialDDLS object
model() `model<-`()
Get and set model slot in a DeconvDLModel object
plotDistances()
Plot distances between intrinsic and extrinsic profiles
plotHeatmapGradsAgg()
Plot a heatmap of gradients of classes / loss function wtih respect to the input
plotSpatialClustering()
Plot results of clustering based on predicted cell proportions
plotSpatialGeneExpr()
Plot normalized gene expression data (logCPM) in spatial coordinates
plotSpatialProp()
Plot predicted proportions for a specific cell type using spatial coordinates of spots
plotSpatialPropAll()
Plot predicted proportions for all cell types using spatial coordinates of spots
plotTrainingHistory()
Plot training history of a trained SpatialDDLS deep neural network model
plots() `plots<-`()
Get and set plots slot in a PropCellTypes object
preparingToSave()
Prepare SpatialDDLS object to be saved as an RDA file
prob.cell.types() `prob.cell.types<-`()
Get and set prob.cell.types slot in a SpatialDDLS object
prob.matrix() `prob.matrix<-`()
Get and set prob.matrix slot in a PropCellTypes object
project() `project<-`()
Get and set project slot in a SpatialDDLS object
saveRDS()
Save SpatialDDLS objects as RDS files
saveTrainedModelAsH5()
Save a trained SpatialDDLS deep neural network model to disk as an HDF5 file
set() `set<-`()
Get and set set slot in a PropCellTypes object
set.list() `set.list<-`()
Get and set set.list slot in a PropCellTypes object
showProbPlot()
Show distribution plots of the cell proportions generated by genMixedCellProp
simMixedProfiles()
Simulate training and test mixed spot profiles
simSCProfiles()
Simulate new single-cell RNA-Seq expression profiles using the ZINB-WaVE model parameters
single.cell.real() `single.cell.real<-`()
Get and set single.cell.real slot in a SpatialDDLS object
single.cell.simul() `single.cell.simul<-`()
Get and set single.cell.simul slot in a SpatialDDLS object
spatial.experiments() `spatial.experiments<-`()
Get and set spatial.experiments slot in a SpatialDDLS object
spatialPropClustering()
Cluster spatial data based on predicted cell proportions
test.deconv.metrics() `test.deconv.metrics<-`()
Get and set test.deconv.metrics slot in a DeconvDLModel object
test.metrics() `test.metrics<-`()
Get and set test.metrics slot in a DeconvDLModel object
test.pred() `test.pred<-`()
Get and set test.pred slot in a DeconvDLModel object
topGradientsCellType()
Get top genes with largest/smallest gradients per cell type
trainDeconvModel()
Train deconvolution model for spatial transcriptomics data
trained.model() `trained.model<-`()
Get and set trained.model slot in a SpatialDDLS object
training.history() `training.history<-`()
Get and set training.history slot in a DeconvDLModel object
zinb.params() `zinb.params<-`()
Get and set zinb.params slot in a SpatialDDLS object
zinbwave.model() `zinbwave.model<-`()
Get and set zinbwave.model slot in a ZinbParametersModel object