Function reference
-
DeconvDLModel-class
DeconvDLModel
- The DeconvDLModel Class
-
PropCellTypes-class
PropCellTypes
- The PropCellTypes Class
-
SpatialDDLS-Rpackage
- SpatialDDLS: an R package to deconvolute spatial transcriptomics data using deep neural networks
-
SpatialDDLS-class
SpatialDDLS
- The SpatialDDLS Class
-
ZinbParametersModel-class
ZinbParametersModel
- The Class ZinbParametersModel
-
barErrorPlot()
- Generate bar error plots
-
barPlotCellTypes()
- Bar plot of deconvoluted cell type proportions
-
blandAltmanLehPlot()
- Generate Bland-Altman agreement plots between predicted and expected cell type proportions of test data
-
calculateEvalMetrics()
- Calculate evaluation metrics on test mixed transcriptional profiles
-
cell.names()
`cell.names<-`()
- Get and set
cell.names
slot in aPropCellTypes
object
-
cell.types()
`cell.types<-`()
- Get and set
cell.types
slot in aDeconvDLModel
object
-
corrExpPredPlot()
- Generate correlation plots between predicted and expected cell type proportions of test data
-
createSpatialDDLSobject()
- Create a
SpatialDDLS
object
-
deconv.spots()
`deconv.spots<-`()
- Get and set
deconv.spots
slot in aSpatialDDLS
object
-
deconvSpatialDDLS()
- Deconvolute spatial transcriptomics data using trained model
-
distErrorPlot()
- Generate box or violin plots showing error distribution
-
estimateZinbwaveParams()
- Estimate parameters of the ZINB-WaVE model to simulate new single-cell RNA-Seq expression profiles
-
features()
`features<-`()
- Get and set
features
slot in aDeconvDLModel
object
-
genMixedCellProp()
- Generate training and test cell type composition matrices
-
getProbMatrix()
- Getter function for the cell composition matrix
-
installTFpython()
- Install Python dependencies for SpatialDDLS
-
interGradientsDL()
- Calculate gradients of predicted cell types/loss function with respect to input features for interpreting trained deconvolution models
-
loadSTProfiles()
- Loads spatial transcriptomics data into a SpatialDDLS object
-
loadTrainedModelFromH5()
- Load from an HDF5 file a trained deep neural network model into a
SpatialDDLS
object
-
method()
`method<-`()
- Get and set
method
slot in aPropCellTypes
object
-
mixed.profiles()
`mixed.profiles<-`()
- Get and set
mixed.profiles
slot in aSpatialDDLS
object
-
model()
`model<-`()
- Get and set
model
slot in aDeconvDLModel
object
-
plotDistances()
- Plot distances between intrinsic and extrinsic profiles
-
plotHeatmapGradsAgg()
- Plot a heatmap of gradients of classes / loss function wtih respect to the input
-
plotSpatialClustering()
- Plot results of clustering based on predicted cell proportions
-
plotSpatialGeneExpr()
- Plot normalized gene expression data (logCPM) in spatial coordinates
-
plotSpatialProp()
- Plot predicted proportions for a specific cell type using spatial coordinates of spots
-
plotSpatialPropAll()
- Plot predicted proportions for all cell types using spatial coordinates of spots
-
plotTrainingHistory()
- Plot training history of a trained SpatialDDLS deep neural network model
-
plots()
`plots<-`()
- Get and set
plots
slot in aPropCellTypes
object
-
preparingToSave()
- Prepare
SpatialDDLS
object to be saved as an RDA file
-
prob.cell.types()
`prob.cell.types<-`()
- Get and set
prob.cell.types
slot in aSpatialDDLS
object
-
prob.matrix()
`prob.matrix<-`()
- Get and set
prob.matrix
slot in aPropCellTypes
object
-
project()
`project<-`()
- Get and set
project
slot in aSpatialDDLS
object
-
saveRDS()
- Save
SpatialDDLS
objects as RDS files
-
saveTrainedModelAsH5()
- Save a trained
SpatialDDLS
deep neural network model to disk as an HDF5 file
-
set.list()
`set.list<-`()
- Get and set
set.list
slot in aPropCellTypes
object
-
showProbPlot()
- Show distribution plots of the cell proportions generated by
genMixedCellProp
-
simMixedProfiles()
- Simulate training and test mixed spot profiles
-
simSCProfiles()
- Simulate new single-cell RNA-Seq expression profiles using the ZINB-WaVE model parameters
-
single.cell.real()
`single.cell.real<-`()
- Get and set
single.cell.real
slot in aSpatialDDLS
object
-
single.cell.simul()
`single.cell.simul<-`()
- Get and set
single.cell.simul
slot in aSpatialDDLS
object
-
spatial.experiments()
`spatial.experiments<-`()
- Get and set
spatial.experiments
slot in aSpatialDDLS
object
-
spatialPropClustering()
- Cluster spatial data based on predicted cell proportions
-
test.deconv.metrics()
`test.deconv.metrics<-`()
- Get and set
test.deconv.metrics
slot in aDeconvDLModel
object
-
test.metrics()
`test.metrics<-`()
- Get and set
test.metrics
slot in aDeconvDLModel
object
-
test.pred()
`test.pred<-`()
- Get and set
test.pred
slot in aDeconvDLModel
object
-
topGradientsCellType()
- Get top genes with largest/smallest gradients per cell type
-
trainDeconvModel()
- Train deconvolution model for spatial transcriptomics data
-
trained.model()
`trained.model<-`()
- Get and set
trained.model
slot in aSpatialDDLS
object
-
training.history()
`training.history<-`()
- Get and set
training.history
slot in aDeconvDLModel
object
-
zinb.params()
`zinb.params<-`()
- Get and set
zinb.params
slot in aSpatialDDLS
object
-
zinbwave.model()
`zinbwave.model<-`()
- Get and set
zinbwave.model
slot in aZinbParametersModel
object