
Function reference
-
DeconvDLModel-classDeconvDLModel - The DeconvDLModel Class
-
PropCellTypes-classPropCellTypes - The PropCellTypes Class
-
SpatialDDLS-Rpackage - SpatialDDLS: an R package to deconvolute spatial transcriptomics data using deep neural networks
-
SpatialDDLS-classSpatialDDLS - The SpatialDDLS Class
-
ZinbParametersModel-classZinbParametersModel - The Class ZinbParametersModel
-
barErrorPlot() - Generate bar error plots
-
barPlotCellTypes() - Bar plot of deconvoluted cell type proportions
-
blandAltmanLehPlot() - Generate Bland-Altman agreement plots between predicted and expected cell type proportions of test data
-
calculateEvalMetrics() - Calculate evaluation metrics on test mixed transcriptional profiles
-
cell.names()`cell.names<-`() - Get and set
cell.namesslot in aPropCellTypesobject
-
cell.types()`cell.types<-`() - Get and set
cell.typesslot in aDeconvDLModelobject
-
corrExpPredPlot() - Generate correlation plots between predicted and expected cell type proportions of test data
-
createSpatialDDLSobject() - Create a
SpatialDDLSobject
-
deconv.spots()`deconv.spots<-`() - Get and set
deconv.spotsslot in aSpatialDDLSobject
-
deconvSpatialDDLS() - Deconvolute spatial transcriptomics data using trained model
-
distErrorPlot() - Generate box or violin plots showing error distribution
-
estimateZinbwaveParams() - Estimate parameters of the ZINB-WaVE model to simulate new single-cell RNA-Seq expression profiles
-
features()`features<-`() - Get and set
featuresslot in aDeconvDLModelobject
-
genMixedCellProp() - Generate training and test cell type composition matrices
-
getProbMatrix() - Getter function for the cell composition matrix
-
installTFpython() - Install Python dependencies for SpatialDDLS
-
interGradientsDL() - Calculate gradients of predicted cell types/loss function with respect to input features for interpreting trained deconvolution models
-
loadSTProfiles() - Loads spatial transcriptomics data into a SpatialDDLS object
-
loadTrainedModelFromH5() - Load from an HDF5 file a trained deep neural network model into a
SpatialDDLSobject
-
method()`method<-`() - Get and set
methodslot in aPropCellTypesobject
-
mixed.profiles()`mixed.profiles<-`() - Get and set
mixed.profilesslot in aSpatialDDLSobject
-
model()`model<-`() - Get and set
modelslot in aDeconvDLModelobject
-
plotDistances() - Plot distances between intrinsic and extrinsic profiles
-
plotHeatmapGradsAgg() - Plot a heatmap of gradients of classes / loss function wtih respect to the input
-
plotSpatialClustering() - Plot results of clustering based on predicted cell proportions
-
plotSpatialGeneExpr() - Plot normalized gene expression data (logCPM) in spatial coordinates
-
plotSpatialProp() - Plot predicted proportions for a specific cell type using spatial coordinates of spots
-
plotSpatialPropAll() - Plot predicted proportions for all cell types using spatial coordinates of spots
-
plotTrainingHistory() - Plot training history of a trained SpatialDDLS deep neural network model
-
plots()`plots<-`() - Get and set
plotsslot in aPropCellTypesobject
-
preparingToSave() - Prepare
SpatialDDLSobject to be saved as an RDA file
-
prob.cell.types()`prob.cell.types<-`() - Get and set
prob.cell.typesslot in aSpatialDDLSobject
-
prob.matrix()`prob.matrix<-`() - Get and set
prob.matrixslot in aPropCellTypesobject
-
project()`project<-`() - Get and set
projectslot in aSpatialDDLSobject
-
saveRDS() - Save
SpatialDDLSobjects as RDS files
-
saveTrainedModelAsH5() - Save a trained
SpatialDDLSdeep neural network model to disk as an HDF5 file
-
set.list()`set.list<-`() - Get and set
set.listslot in aPropCellTypesobject
-
showProbPlot() - Show distribution plots of the cell proportions generated by
genMixedCellProp
-
simMixedProfiles() - Simulate training and test mixed spot profiles
-
simSCProfiles() - Simulate new single-cell RNA-Seq expression profiles using the ZINB-WaVE model parameters
-
single.cell.real()`single.cell.real<-`() - Get and set
single.cell.realslot in aSpatialDDLSobject
-
single.cell.simul()`single.cell.simul<-`() - Get and set
single.cell.simulslot in aSpatialDDLSobject
-
spatial.experiments()`spatial.experiments<-`() - Get and set
spatial.experimentsslot in aSpatialDDLSobject
-
spatialPropClustering() - Cluster spatial data based on predicted cell proportions
-
test.deconv.metrics()`test.deconv.metrics<-`() - Get and set
test.deconv.metricsslot in aDeconvDLModelobject
-
test.metrics()`test.metrics<-`() - Get and set
test.metricsslot in aDeconvDLModelobject
-
test.pred()`test.pred<-`() - Get and set
test.predslot in aDeconvDLModelobject
-
topGradientsCellType() - Get top genes with largest/smallest gradients per cell type
-
trainDeconvModel() - Train deconvolution model for spatial transcriptomics data
-
trained.model()`trained.model<-`() - Get and set
trained.modelslot in aSpatialDDLSobject
-
training.history()`training.history<-`() - Get and set
training.historyslot in aDeconvDLModelobject
-
zinb.params()`zinb.params<-`() - Get and set
zinb.paramsslot in aSpatialDDLSobject
-
zinbwave.model()`zinbwave.model<-`() - Get and set
zinbwave.modelslot in aZinbParametersModelobject