All functions

DigitalDLSorter-class DigitalDLSorter

The DigitalDLSorter Class

DigitalDLSorterDNN-class DigitalDLSorterDNN

The DigitalDLSorterDNN Class

ProbMatrixCellTypes-class ProbMatrixCellTypes

The Class ProbMatrixCellTypes

ZinbParametersModel-class ZinbParametersModel

The Class ZinbParametersModel

barErrorPlot()

Generate bar error plots

barPlotCellTypes()

Bar plot of deconvoluted cell type proportions in bulk RNA-Seq samples

blandAltmanLehPlot()

Generate Bland-Altman agreement plots between predicted and expected cell type proportions from test data results

bulk.simul() `bulk.simul<-`()

Get and set bulk.simul slot in a DigitalDLSorter object

calculateEvalMetrics()

Calculate evaluation metrics for bulk RNA-Seq samples from test data

cell.names() `cell.names<-`()

Get and set cell.names slot in a ProbMatrixCellTypes object

cell.types() `cell.types<-`()

Get and set cell.types slot in a DigitalDLSorterDNN object

corrExpPredPlot()

Generate correlation plots between predicted and expected cell type proportions from test data

createDDLSobject()

Create a DigitalDLSorter object from single-cell RNA-seq and bulk RNA-seq data

deconv.data() `deconv.data<-`()

Get and set deconv.data slot in a DigitalDLSorter object

deconv.results() `deconv.results<-`()

Get and set deconv.results slot in a DigitalDLSorter object

deconvDDLSObj()

Deconvolute bulk gene expression samples (bulk RNA-Seq)

deconvDDLSPretrained()

Deconvolute bulk RNA-Seq samples using a pre-trained DigitalDLSorter model

digitalDLSorteR-package digitalDLSorteR

digitalDLSorteR: an R package to deconvolute bulk RNA-Seq samples using single-cell RNA-seq data and neural networks

distErrorPlot()

Generate box plots or violin plots to show how the errors are distributed

estimateZinbwaveParams()

Estimate the parameters of the ZINB-WaVE model to simulate new single-cell RNA-Seq expression profiles

features() `features<-`()

Get and set features slot in a DigitalDLSorterDNN object

generateBulkCellMatrix()

Generate training and test cell composition matrices

getProbMatrix()

Getter function for the cell composition matrix

installTFpython()

Install Python dependencies for digitalDLSorteR

interGradientsDL()

Calculate gradients of predicted cell types/loss function with respect to input features for interpreting trained deconvolution models

listToDDLS()

Transform DigitalDLSorter-like list into an actual DigitalDLSorterDNN object

listToDDLSDNN()

Transform DigitalDLSorterDNN-like list into an actual DigitalDLSorterDNN object

loadDeconvData()

Load data to be deconvoluted into a DigitalDLSorter object

loadTrainedModelFromH5()

Load from an HDF5 file a trained Deep Neural Network model into a DigitalDLSorter object

method() `method<-`()

Get and set method slot in a ProbMatrixCellTypes object

model() `model<-`()

Get and set model slot in a DigitalDLSorterDNN object

plotHeatmapGradsAgg()

Plot a heatmap of gradients of classes / loss function wtih respect to the input

plotTrainingHistory()

Plot training history of a trained DigitalDLSorter Deep Neural Network model

plots() `plots<-`()

Get and set plots slot in a ProbMatrixCellTypes object

preparingToSave()

Prepare DigitalDLSorter object to be saved as an RDA file

prob.cell.types() `prob.cell.types<-`()

Get and set prob.cell.types slot in a DigitalDLSorter object

prob.matrix() `prob.matrix<-`()

Get and set prob.matrix slot in a ProbMatrixCellTypes object

project() `project<-`()

Get and set project slot in a DigitalDLSorter object

saveRDS()

Save DigitalDLSorter objects as RDS files

saveTrainedModelAsH5()

Save a trained DigitalDLSorter Deep Neural Network model to disk as an HDF5 file

set() `set<-`()

Get and set set slot in a ProbMatrixCellTypes object

set.list() `set.list<-`()

Get and set set.list slot in a ProbMatrixCellTypes object

showProbPlot()

Show distribution plots of the cell proportions generated by generateBulkCellMatrix

simBulkProfiles()

Simulate training and test pseudo-bulk RNA-Seq profiles

simSCProfiles()

Simulate new single-cell RNA-Seq expression profiles using the ZINB-WaVE model parameters

single.cell.real() `single.cell.real<-`()

Get and set single.cell.real slot in a DigitalDLSorter object

single.cell.simul() `single.cell.simul<-`()

Get and set single.cell.simul slot in a DigitalDLSorter object

test.deconv.metrics() `test.deconv.metrics<-`()

Get and set test.deconv.metrics slot in a DigitalDLSorterDNN object

test.metrics() `test.metrics<-`()

Get and set test.metrics slot in a DigitalDLSorterDNN object

test.pred() `test.pred<-`()

Get and set test.pred slot in a DigitalDLSorterDNN object

topGradientsCellType()

Get top genes with largest/smallest gradients per cell type

trainDDLSModel()

Train Deep Neural Network model

trained.model() `trained.model<-`()

Get and set trained.model slot in a DigitalDLSorter object

training.history() `training.history<-`()

Get and set training.history slot in a DigitalDLSorterDNN object

zinb.params() `zinb.params<-`()

Get and set zinb.params slot in a DigitalDLSorter object

zinbwave.model() `zinbwave.model<-`()

Get and set zinbwave.model slot in a ZinbParametersModel object